1、注册成功率= UE成功注册次数/UE注册请求次数
2、VoLTE语音网络接通率=VoLTE语音网络接通次数/VoLTE语音呼叫总次数 3、eSRVCC切换成功率= eSRVCC切换成功次数/eSRVCC切换总次数 4、eSRVCC切换时延= eSRVCC切换累计时长/eSRVCC切换成功次数 接通率:
LTE差小区问题分析与处理方法 1、接入类
接入失败通常有三大类原因:
无线侧参数配置问题、信道环境影响以及核心网侧配置问题。因此遇到无法接入的情况,可以大致按以下步骤进行排查:
1. 确认是否全网指标恶化,如果是全网指标恶化,需要检查操作,告警,是否存在网络 变动和升级行为。
2. 如果是部分站点指标恶化,拖累全网指标,需要寻找TOP站点。 3. 查询RRC连接建立和ERAB建立成功率最低的TOP3站点和TOP时间段。
4. 查看TOP站点告警,检查单板状态,RRU状态,小区状态,OM操作,配置是否异 常。
5. 提取CHR日志,分析接入时的信道质量和SRS的SINR是否较差(弱覆盖),是否存 在TOP用户。 6. 针对TOP站点进行针对性的标准信令跟踪、干扰检测分析。
7. 如果标准信令和干扰检测无异常,将一键式日志,标口跟踪,干扰检测结果返回给开 发人员分析 资源分配失败导致RRC连接建立失败
1、将SRS资源配置方式修改为接入增强、收缩功率
2、增大T302定时器,增加在RRC连接建立拒绝后延长惩罚的时间(默认4s) UE无应答导致RRC建立失败
结合实际无线环境通过工程参数调整、站点补盲解决弱覆盖问题; 1、 根据干扰在每个PRB上的分布特征,定位干扰类型,排查干扰源; 2、 极端情况下提升小区最小接入电平控制用户接入;
3、 调整上行功控参数路径损耗因子(0.7)、PUSCH标称P0值(-67)提升UE 发射功 率;
4、 降低RACH最大传输次数,减少边缘用户RRC请求 核心网问题
1、首先确认问题出现的时间点及涉及范围; 2、与核心网确认是否在此期间进行过相关操作; 3、根据日志分析是否为TOP终端问题; 指标 修改命令 MOD CELLULPCCOMM MOD RRCCONNSTATETIMER 接通率 MOD CELLALGOSWITCH MOD RACHCFG MOD RACHCFG 掉线率 首先要获取全网的掉话率指标及话统变化趋势,如果全网指标突然恶化,需要执行以下检查工作: 1. 确认是否存在传输告警,设备异常告警等; 2. 分析是否由于话务量突增导致的掉话率恶化;
3. 确认近期是否有过版本升级、打补丁等操作等重大操作;
4. 分析小区级掉话指标,按照掉话绝对次数分析TOPN,首先核查小区是否存在RRU、
修改说明(参考) 消息3相对前导的功率偏置从4到2 过滤重复RRCConnReq消息定时器(2秒—>15秒) HARQ-ACK反馈模式配置优化开关(开—>关) 前导初始接收目标功率值(-104dBm至-102) Msg3的HARQ最大传输次数(5至3) 学习资料
学习资料收集于网络,仅供参考
通道、传输、基带板等相关告警;
5. 分析小区掉话原因、是否存在TOP用户; 6. 针对不同原因进行优化调整; 无线层问题导致的异常释放
eNodeB发起的原因为无线层问题的UEContext释放次数 eNodeB发起的原因为上行弱覆盖的UEContext异常释放次数 1. 弱覆盖 优化建议:
结合实际测试无线环境进行RF调整; 1、覆盖空洞区域加站;
2、边缘覆盖区域通过调整互操作参数使其尽快切换至异系统; 3、极端情况通过调整最小接入电平控制用户接入;
4、对于上行弱覆盖,可通过调整上行功控参数提升UE发射功率;
修改说明(参考) 上行时间对齐定时器由SF1920修改为SF500 异系统A1 RSRP触发门限(-115修改为-112),异系统A2 RSRP触发门限(-118修改为-115),异系统A1A2时间迟滞1280ms修改为0ms 修改MIMO传输模式自适应开关为OC_ADAPTIVE(开闭环自适应),固定传输模式从NULL改为TM2 (切换公共优化开关)-基于SRI的GAP优化开关打开、DRX场景下基于SRI的GAP优化开关打开; (HARQ算法开关) DeltaMcsEnabled 关闭时SRS相对PUSCH功率偏置由-30修改为0 PDCCH初始OFDM符号数(值越大解码能力越强)同时配合PDCCH占用OFDM符号数动态调整开关(关) 上行资源分配策略(频选与干扰随机化分配策略)配合智能预调度每次持续时间(毫秒)50,使用;上行HARQ最大传输次数:默认是5 上行调度开关:智能预调度开关:开 降低随机响应信号功率为负值 提高PUCCH标称P0值(提高eNodeB期望的PUCCH发射功率,提高解调):由默认的-105修改为-100 切换: 切换失败原因主要有以下几个方面:传输、设备内部处理、覆盖(弱覆盖/越区覆盖) 、干扰、邻区漏配、切换不及时等;传输问题定位需要在收发端抓取数据确认;设备内部处理 出错需要提取工作日志进行分析定位;弱覆盖、越区覆盖、干扰、切换不及时、邻区漏配一般 体现在信令丢失导致切换失败,属于空口质量问题,优化方法如下: 1. 弱覆盖区域需要通过调整天馈、增加功率、新建站点解决; 2. 越区覆盖通过控制下倾(机械下倾、电下倾)来控制覆盖范围;
3. 干扰问题需要定位干扰类型,外部干扰可通过扫频确认干扰源;内部干扰可使用相关 干扰算法降低影响;
4. 添加漏配邻区;
5. 切换不及时可通过调整切换门限、CIO、迟滞、触发时间等切换参数控制切换点; 高误块
修改命令 MOD CELLALGOSWITCH MOD CELLULSCHALGO MOD CELLDLSCHALGO 修改说明(参考) 小区调度策略开关-异常UE停止调度算法开关打开 上行异常UE调度门限由15修改为6 HARQ的最大传输次数6修改为8 学习资料
学习资料收集于网络,仅供参考
上下行调度优化 MOD CELLALGOSWITCH: MOD CELLALGOSWITCH MOD CELLULSCHALGO 上行SR调度处理优化开关 上行接入用户调度优化开关 SRI虚警门限开关 功控参数 MOD CELLALGOSWITCH MOD CELLALGOSWITCH 寻呼 修改命令 MOD PCCHCFG MOD
CELLCHPWRCFG MODCELLDLSCHO MOD RACHCFG 时延: 修改命令 MOD RLCPDCPPARAGROUP 4G驻留比: 网络驻留能力类(覆盖)、234G互操作类、终端营销类
1、 TDS空闲态、业务态参数:最低接入、高优先级E-UTRA小区重选RSRP信号门限、TDS重定向至LTE
门限;
2、 GSM重选至LTE门限:基于EUTRAN的最小接入电平、优先级;
3、 LTE侧空闲态:最低接收电平(小区选择)、最低接收电平(小区重选)、服务频点低优先级重选门限 4、 LTE业务态: 23G功率、速率等优化 对应华为参数中文名称 最低接收电平(小区选择) 最低接收电平(小区重选) 服务频点低优先级重选门限 异频异系统盲切换A1A2事件RSRP门限 UTRAN切换B2 RSRP门限1 此次统一刷新值 【-128dBm】 【-128dBm】 【-126dbm】 【-127dBm】 【-128dBm】 【-128dBm】 【-119】 【-122】 现网值 TDS重选至LTE时异系统的判决门限 -120 修改说明(参考) PDCP层丢弃定时器-组5(无限长修改为300) 修改说明(参考) 增大用户寻呼下发次数,可提高寻呼成功率
寻呼信道功率、随机响应信号功率(值变大增大覆盖,负值降低覆盖),增大该值可提高寻呼成功率
随机接入响应消息和寻呼消息码率越小寻呼成功率越高 前导初始接收目标功率值(-104dBm至-102) SRS功控开关 PUCCH内环功控开关 GERAN切换B2 RSRP门限1 异系统A1 RSRP触发门限 异系统A2 RSRP触发门限 网络制式 3G 名称 学习资料
学习资料收集于网络,仅供参考
3G 2G 4G下载速率: 通过以上四个维度为切入点,建立以下五个步骤提升LTE网络用户感知:
网络结构优化:弱覆盖区域优化、重叠覆盖优化、干扰小区、故障小区处理; 网络质量提升:SINR提升;
关键性能参数:PCI参数优化、LTE邻区优化、2G/3G/4G互操作邻区优化、CSFB参数配置优化; 双层网异频优化:梳理切换带、PCI合理优化、邻区优化; 网络调度提升:服务器、传输带宽、参数、硬件问题。
用户在进行数据业务时,除无线环境的好坏直接影响用户的使用感知外,还有资源调度情况:
网络参数:1、PRB开关、上下行流控开关是否关闭;
2、合理配置PUCCH、CQI资源及PRACH频域位置; 3、核查基站的子帧、时隙配比、TM/单双流门限; 4、基站的CQI修正算法。
传输带宽:1、设置合理的传输保证宽带及最大带宽;
2、基站侧抓包传输丢包率、重传率及时延均较高。
通过以上优化手段来提升LTE网络用户的下载速率,其中网络结构优化和双层网异频优化是我们本次优化的重要手段。 双频网优化:
覆盖、邻区、PCI优化后
普通城区:通过合理的双频网F/D切换、重选策略,实现覆盖、速率等性能最优。
校园场景:校园等热点场景用户数较多、相对固定,主要考虑负荷均衡。通过双频网F/D负荷均衡、切换、重选策略,实现F/D话务均衡分担,提升用户业务感知。 普通城区:A2+A3 校园网:A2+A4
TDS重定向至LTE门限 GSM重选至LTE门限 -120 【-120(卡特-119) 学习资料
学习资料收集于网络,仅供参考
校园场景:
空口灌包:
灌包方式目前有两种:1、服务器灌包,目的是检测传输有没有故障。2、基站侧灌包,目的是检测空口质量。
1、首先获取UE的TMSI和E-RAB ID:可以从信令跟踪中获取;也可以在eNodeB上通过DSP ALLUEBASICINFO与DSP UEONLINEINFO两条命令获取当前存在的用户; 2、启动空口下行冲包测试:STR UUDATATST 3、停止空口下行冲包测试:STR UUDATATST
学习资料
学习资料收集于网络,仅供参考
CSFB参数配置优化
核查方法:对CSFB回落情况进行分析,分析LTE语音回落后MR上报的GSM小区信息,并与LTE小区的GSM邻区配置进行比较,建议对出现次数多、信号强度高、并且是漏配的邻区进行核查,同时核查LTE小区的TAC与GSM小区的LAC值是否一致。 大话务: 参数类型 参数名称 UU消息并发开关建议值 Onoff on on off off Offon Offon (UuMsgSimulSendSwitch)=OFF 切换公共优化开关(HoCommOptSwitch)=ON 特性 ANR开关(AnrSwitch)=0FF IRC算法开关(IrcSwitch)=ON NonGBR业务包汇聚调度开关(NonGbrBundlingSwitch)=ON 基于竞争随机接入数(number Of PRACH RA-Preambles)=40~52 竞争解决定时器(mac-Contention Resolution Timer)=sf PUCCH PUCCH资源调整开关 Cell-Specific置为SC0 SRS SRS周期建议配置为自适应 小区需要打开增强型接入 华为默认配置PDCCH符号数为自动调整 参数Ratio52 SF_MAC_RESOLUTION_TIMER 超高速场景下,建议为关; 其它场景下,建议为开 srs-SubframeConfig可配置,建议配SC0 ON ACCESS_ENHANCED BOOLEAN_TRUE PDCCH 系统消息: ECFIADAPTIONON/ON MIB:用于系统接入。MIB上传输几个比较重要的系统信息参数,如小区下行带宽、PHICH配置参数、无线系统帧号SFN(包含SIB1消息的位置),在PBCH上发送,表现为“RRC_MASTER_INFO_BLOCK”,传输周期为40ms也就是从系统帧号MOD4等于0的无线帧开始,传输4次。
学习资料
学习资料收集于网络,仅供参考
SIB1:广播小区接入与小区选择的相关参数以及SI消息的调度信息 SIB2:小区内所有UE共用的无线参数配置,其它无线参数基本配置。 SIB3:小区重选信息,
SIB4:同频邻区列表以及每个邻区的重选参数、同频白/黑名单小区列表。
SIB5:异频相邻频点列表以及每个频点的重选参数、异频相邻小区列表以及每个邻区的重选参数、异频黑名单小区列表。
SIB6:UTRAFDD邻频频点列表以及每个频点的重选参数、UTRA TDD邻频频点列表以及每个频点的重选参数。 SIB7:GERAN邻频频点列表以及每个频点的重选参数。 功率:
RSRP:在系统接收带宽内,两个时隙上相应的小区参考信号的每个RSRE接收功率 的线性平均 ρA表征没有导频的OFDM symbol(A类符号)的数据子载波功率和导频子载波功率的比值。
ρB表征有导频的OFDM symbol (B类符号)的数据子载波功率和导频子载波功率的比值。提升PB功率可提升下载速率,但需降低PA功率
RS(参考信号):每个RE(时频单元)上的功率;一个RE上的功率就是: 43 - 10log10(1200) = 12.2 dBm PA PB关系:
Pb取值越大,ReferenceSignalPwr在原来的基础上抬升得越高,能获得更好的信道估计性能,增强PDSCH的解调性能,同时减少了PDSCH(Type B)的发射功率,可以改善边缘用户速率。
RS功率一定时,增大PA,增加了小区所有用户的功率,提高小区所有用户的MCS,但会造成功率受限,影响吞吐率;反之,降低小区所有用户的功率和MCS,降低小区吞吐率 事件类型:
LTE哪三种切换类型。
1. 根据切换触发的原因,LTE的切换可分为:
基于覆盖的切换、基于负载的切换 基于业务的切换 2. 根据切换间小区频点不同与小区系统属性不同,可以分为: 同频切换、异频切换、异系统切换
3. eNb站内切换 X2口切换 S1口切换 事件类型 A1 触发含义 使用场景 取消异频/异系统的GAP测量 启动异频/异系统的GAP测量 触发同频/同优先级异频切换 触发高优先级异频切换 触发低优先级异频切换 触发高优先详述 A1表示服务小区质量高于一定门限,当满足事件触发条件时UE便上报测量报告,eNodeB停止异频/异系统测量。但在基于频率优先级的切换中,事件A1用于启动异频测量 A2表示服务小区质量低于一定门限,当满足事件触发条件时UE便上报测量报告,eNodeB启动异频/异系统测量 A3表示同频/异频邻区质量相比服务小区质量高出一定门限,当满足事件触发条件的小区信息被上报时,源eNodeB启动同频/异频切换请求 A4表示异频邻区质量高于一定门限,满足事件触发条件的小区信息被上报时,源eNodeB启动异频切换请求。 A5表示服务小区质量低于一定门限,同时异频邻区质量高于一定门限,满足事件触发条件的小区信息被上报时,源eNodeB启动异频切换请求 B1表示异系统邻区质量高于一定门限,满足事件触发条件别人信号很好 别人比我好 我信号很好 白话表达 服务小区高于门限 A2 服务小区低于门限 我信号不行了 A3 邻区比服务小区好 异频邻区高于门限 异频邻区高于A4 A5 门限且服务小区低于门限 RAT邻区高于门限 我信号不行了,别人很好 别人(异系统)信号很好 B1 级RAT切换 的小区信息被上报时,源eNodeB启动异系统切换请求 学习资料
学习资料收集于网络,仅供参考
RAT邻区高于B2 门限且服务小区低于门限 传输模式: TM1 单天线端口传输:主要应用于单天线传输的场合 B2表示服务小区质量低于一定门限,同时异系统邻区质量高于一定门限,满足事件触发条件的小区信息被上报时,源eNodeB启动异系统切换请求 我信号不行了,别人(异系统)很好 触发低优先级RAT切换 兼TM2 发送分集模式:适合于小区边缘信道情况比较复杂,干扰较大的情况,有时候也用于高速的情况,分集能够提供分集增益。 兼TM3 开环空间分集:合适于终端(UE)高速移动的情况 TM4 闭环空间分集:适合于信道条件较好的场合,用于提供高的数据率传输。 TM5 MU-MIMO传输模式:主要用来提高小区的容量。 TM6 Rank1的传输:主要适合于小区边缘的情况 TM7 Port5的单流Beamforming模式:主要也是小区边缘,能够有效对抗干扰 TM8 双流Beamforming模式:可以用于小区边缘也可以应用于其他场景。 TM9 传输模式9是LTE-A中新增加的一种模式,可以支持最大到8层的传输,主要为了提升数据传输速率。
定时器: 定时器 T300 功能描述 UE发送RRCConnectionRequest后启动 网络在RRC连接拒绝时,会在RRC Connection Reject消息中同时向UE指示等待时间(T302 时长),UE需等待T302指示的时间后,再发起下一次RRCT302 连接建立流程 在UE进行无线链路检测时,当连续收到的下行失步指示(out of sync)个数等于N310时,则会触发定时器T310的启动。 如果在T310持续过程中,连续又收到下行同步指示(in sync)个数等于N311时,则停止T310定时器,指示链路同步已恢复。 如定时器T310 超时,则认为检测到无线链路T300/N300 失败,将触发RRC连接重建过程 在“E-UTRAN内切换”和“切换入E-UTRAN 的系统间切换”的情况下,UE在收到带有“mobilityControlInfo”的RRC连接重配置消息时启动T304定时器,在完成新小区的随机接入后停止该定时器。 T304定时器超时后,T304 UE需恢复原小区配置并发起RRC重建流程 T311用于UE的RRC连接重建过程,T311控制UE开始RRC连接重建到UE选T311 择一个小区过程所需的时间,期间UE执行cell-selection过程 在UE上传RRCConnection ReestabilshmentRequest后启动。在超时前如果收到UE收到RRCConnectionReestablishment或RRCConnectionReestablishmentReject,则定时器停止。定时器超时,则T301 UE变为RRC_IDLE状态。 600ms 重建立类定时器 1、RF优化操作,关于如何判断漏配邻区。影响下行速率的原因有哪些 RF优化流程:1、拉网测试,熟悉网络情况。2、问题点分析。3、提出解决方案。4、优化调整。5、复测,出优化总结报告。
优化调整方法:RF调整主要是:天馈调整、功率调整、邻区优化、PCI优化调整 影响下行速率的原因和解决方法:
1、 弱覆盖,可以通过天馈调整和功率调整以及新建站来解决。 2、信号质量差,SINR低,可以通过天
馈调整,功率调整,邻区优化,参数优化。 3、信号质量很好但调度数不满,可能是因为多用户,设备故障,传输故障,空口质量导致,需要后台配合定位,目前主要通过灌包来定位。 4,硬件告警,
1000ms 重建立类定时器 500ms 切换类定时器 1000ms/N1 掉线类定时器 2S 接入类定时器 取值建议 1000ms 说明 接入类定时器 提提提增增 学习资料
学习资料收集于网络,仅供参考
提交工程解决。 5,传输故障,提交工程解决。 6,测试设备和软件问题,通过设备和软件重启,或者更换设备解决。 7、上下行链路不平衡,暂时没遇到,可以提话统定位。 PCI规划的原则:
1. 对主小区有强干扰的其它同频小区,不能使用与主小区相同的PCI 2. 邻小区导频符号V-shift错开最优化原则; 3. 同一站点的PCI分配在同一个PCI组内,相邻站点的PCI在不同的PCI组内。 4. 邻区不能同PCI,邻区的邻区也不能采用相同的PCI; PCI共有504个,PCI规划主要需尽量避免PCI模三干扰 2、子帧配比和特殊子帧配比相关问题,调度数的计算方法。
特殊子帧配比方式有9种,常用的有5(3:9:2)、6(9:3:2)、7(10:2:2),常规子帧配比方式有7种,常用的有1(2:2)和2(1:3)。 上下行时域调度数的算法:一个无线帧是10ms,一秒就有100个无线帧,按5ms的转换周期,常规子帧上下行配比1:3,特殊子帧3:9:2来计算,每秒下行满调度数=3*100*2=600。每秒上行满调度数=1*100*2=200. 按5ms转换周期,常规子帧上下行配比1:3,特殊子帧10:2:2来计算,每秒下行满调度数=(3+1)*100*2=800。每秒上行满调度数=1*100*2=200. 3、小区搜索过程:
小区搜索是UE实现与E-UTRAN下行时频同步并获得服务小区的过程。 小区搜索分两个步骤:
第一步:UE解调主同步信号实现符号同步,并获得小区组内ID;(本小区表示11,12,13) 第二步:UE解调次同步信号实现符号同步,并获得小区组ID;(小区内的108组) 初始化小区搜索过程如下:
UE上电后开始进行初始化小区搜索,搜寻网络。一般而言,UE第一次开机时并不知道网络的带宽和频点。 UE会重复基本的小区搜索过程,遍历整个频带的各个频点尝试解调同步信号。(这个过程比较耗时,但一般对此的时间要求并不严格,可以通过一些方法缩短以后的UE初始化时间,如UE储存以前的可用网络信息,开机后优先搜索这些网络)。
一旦UE搜寻到可用网络并与网络实现时频同步,获得服务小区ID,即完成小区搜索。UE将解调下行广播信道PBCH,获得系统带宽,发射天线数等信息。
完成以上过程后,UE解调下行控制信道PDCCH,获得网络指配给这个UE的寻呼周期。然后在固定的寻呼周期中从IDLE态醒来解调PDCCH,监听寻呼。如果有属于该UE的寻呼,则解调指定的下行共享信道PDSCH资源,接收寻呼。
4、基于竞争与非竞争过程:
基于竞争 1.分配前导、随机接入前导、随机接入响应
非竞争接入流程 :随机接入前导、随机接入前导响应、分配传输、竞争解决 5、LTE的关键技术
1. 采用OFDM技术 2. 采用MIMO(Multiple-Input Multiple Output)技术 3. 调度和链路自适应(AMC) 4. HARQ 5. 高阶调制。 6、LTE上下行信道
学习资料
学习资料收集于网络,仅供参考
7、TDD LTE与FDD LTE相比有哪些优势和劣势?
频分双工(FDD) 和时分双工(TDD) 是两种不同的双工方式。
FDD是在分离的两个对称频率信道上进行接收和发送,用保护频段来分离接收和发送信道,其单方向的资源在时间上是连续的。FDD在支持对称业务时,能充分利用上下行的频谱,但在支持非对称业务时,频谱利用率将大大降低。
TDD用时间来分离接收和发送信道,接收和发送使用同一频率载,其单方向的资源在时间上是不连续的,时间资源在两个方向上进行了分配,基站和终端之间必须协同一致才能顺利工作。 TDD 双工方式的工作特点使TDD具有如下优势: 能够灵活配置频率,使用FDD 系统不易使用的零散频段
可以通过调整上下行时隙转换点,提高下行时隙比例,能够很好的支持非对称业务具有上下行信道一致性,基站的收/发可以共用部分射频单元,降低了设备成本接收上下行数据时,不需要收发隔离器,只需一个开关即可,降低了设备的复杂度具有上下行信道互惠性,能够更好的采用传输预处理技术,如预RAKE 技术、联合传输(JT)技术、智能天线技术等, 能有效地降低移动终端的处理复杂性。 TDD双工方式相较于FDD,存在的不足:
TDD方式的时间资源分别分给了上行和下行,因此TDD方式的发射时间大约只有FDD的一半,如果TDD要发送和FDD同样多的数据,就要增大TDD的发送功率;在相同带宽条件下,TDD的峰值速率要低于FDD TDD系统上行受限,因此TDD基站的覆盖范围明显小于FDD基站;
TDD系统收发信道同频,无法进行干扰隔离,系统内和系统间存在干扰;为了避免与其他无线系统之间的干扰,TDD需要预留较大的保护带,影响了整体频谱利用效率。 8、 LTE邻区规划原则
地理位置上直接相邻的小区一般要作为邻区;
邻区一般都要求互为邻区,即A扇区把B作为邻区,B也要把A作为邻区。如果在某些场景下,如高速覆盖,需要设单向邻区,如A扇区可以切换到B扇区而不希望B扇区切换到A扇区,那么可以通过将A扇区加入到B扇区的Black list中实现。
对于密集城区和普通城区,由于站间距比较近(0.3~1.0公里),邻区应该多做。目前我司产品对于同频、异频和异系统邻区分别都最大可以配置32个,所以在配置邻区时,需要注意邻区个数,把确实存在相邻关系的配进来,不相干的要去掉,以免占用了邻区的名额。
对于市郊和郊县的基站,虽然站间距很大,但一定要把位置上相邻的作为邻区,保证能够及时切换。 因为LTE的邻区不存在先后顺序的问题,而且检测周期非常短,所以只需要考虑不遗漏邻区,而不需要严格按照信号强度来排序相邻小区。 9、LTE中的跟踪区边界规划的原则是什么
学习资料
学习资料收集于网络,仅供参考
跟踪区的规化要确保寻呼信道容量不受限,同时对于区域边界的位置更新开销最小,而且要求易于管理。考虑到我司MME产品的规格,一般的建网区域只需要一个MME管辖(华为MME管辖能力约1-2万个基站)。所以先介绍一个MME管辖场景,对于多个MME场景,可按MME分簇之后再考虑。跟踪区的规划需要遵循以下原则:
跟踪区的划分不能过大或过小,TAC的最大值由MME的最大寻呼容量来决定; 城郊与市区不连续覆盖时,郊区(县)使用单独的跟踪区,不规划在一个TA中; 跟踪区规划应在地理上为一块连续的区域,避免和减少各跟踪区基站插花组网; 寻呼区域不跨MME的原则
利用规划区域山体、河流等作为跟踪区边界,减少两个跟踪区下不同小区交叠深度,尽量使跟踪区边缘位置更新成本最低;
在LTE可使用的多个频段中(后期扩容的需求),跟踪区的划分即可根据频段也可根据地理位置划分。 10、RSRP、SINR、RSRQ什么意思?
RSRP: Reference Signal Received Power下行参考信号的接收功率
,和WCDMA中CPICH的RSCP作用类似,可以用来衡量下行的覆盖。区别在于协议规定RSRP指的是每RE的能量,这点和RSCP指的是全带宽能量有些差别,所以RSRP在数值上偏低; SINR:信号与干扰加噪声比 (Signal to Interference plus Noise Ratio)是指:信号与干扰加噪声 比(SINR)是接收到的有用信号的强度与接收到的干扰信号(噪声和干扰)的强度的比值;可以简单的理解为“信噪比”。 RSRQ (Reference Signal Received Quality)主要衡量下行特定小区参考信号的接收质量。和
WCDMA中CPICH Ec/Io作用类似。二者的定义也类似,RSRQ = RSRP * RB Number/RSSI,差别仅在于协议规定RSRQ相对于每RB进行测量的 11、MCS调度实现过程:
答:UE测算SINR,上报RI及CQI索引给eNodeB,eNodeB根据UE反馈的RI及CQI索引进行TM 和MCS调度; MCS一般由CQI,IBLER,PC+ICIC等共同确定的。 下行UE根据测量的CRS SINR映射到CQI,上报给eNB。上行eNB通过DMRS或SRS测量获取上行CQI。对于UE上报的CQI(全带或子带)或上行CQI,eNB首先根据PC约束、ICIC约束和IBLER情况来对CQI进行调整,然后将4bits的CQI映射为5bits的MCS。 5bits MCS通过PDCCH下发给UE,UE根据MCS可以查表得到调制方式和TBS,进行下行解调或上行调制,eNB相应的根据MCS进行下行调制和上行解调。 12、LTE速率计算:
13、PCI中文名称以及504个是怎么计算出来的?
答:LTE是用PCI(Physical Cell ID)来区分小区,并不是以扰码来区分小区,LTE无扰码的概念,LTE共有504个PCI; PCI有主同步序列和辅同步序列组成,主同步信号是长度为62的频域Zadoff-Chu序列的3种不同的取值,主同步信号的序列正交性比较好;辅同步信号是10ms中的两个辅同步时隙(0和5)采 用不同的序列,168种组合,辅同步信号较主同步信号的正交性差,主同步信号和辅同步信号共同组成504个PHY_CELL_ID码; PCI=PSS+SSS*3 PCI是下行区分小区的,上行根据根序列区分 E-UTRA小区搜索基于(主同步信号)、(辅同步信号)、以及下行参考信号完成 同步信号的作用: 频率校正。 基准相位。信道估计。测量。
学习资料
学习资料收集于网络,仅供参考
14、TD-LTE载波可同时接入多少用户?
答:影响空口的性能指标很多,如发射功率,空口信噪比,天线数,时隙配比,频点带宽,控制信道资源,HARQ方式,最大重传数目等。理论上讲,从系统能力范畴,在无线20M带宽下,单小区提
供不低于1200个用户同时在线的能力。对于语音提供VoIP的服务,为了满足QoS的语音质量要求,控制信道配置最大的情况下,2:2配比最大支持,最大瞬时可以支持900多个用户,但比较实际的平均情况支持400多个VoIP用户同时通话
学习资料
因篇幅问题不能全部显示,请点此查看更多更全内容
Copyright © 2019- hzar.cn 版权所有 赣ICP备2024042791号-5
违法及侵权请联系:TEL:199 1889 7713 E-MAIL:2724546146@qq.com
本站由北京市万商天勤律师事务所王兴未律师提供法律服务